New Material Allows for Ultra-Thin Solar Cells

Date: 6 August 2014

Scientists at the Vienna University of Technology have managed to combine two semiconductor materials, consisting of only three atomic layers each.

This new structure holds great promise for a new kinds of solar cell.    

Extremely thin, semi-transparent, flexible solar cells could soon become reality. At the Vienna University of Technology, Thomas Mueller, Marco Furchi and Andreas Pospischil have managed to create a semiconductor structure consisting of two ultra-thin layers, which appears to be excellently suited for photovoltaic energy conversion.



Several months ago, the team had already produced an ultra-thin layer of the photoactive crystal tungsten diselenide. Now, this semiconductor has successfully been combined with another layer made of molybdenum disulphide, creating a designer-material that may be used in future low-cost solar cells. With this advance, the researchers hope to establish a new kind of solar cell technology.

Marco Furchi, Thomas Müller, Andreas Pospischil (left to right)



Two-Dimensional Structures

Ultra-thin materials, which consist only of one or a few atomic layers are currently a hot topic in materials science today. Research on two-dimensional materials started with graphene, a material made of a single layer of carbon atoms. Like other research groups all over the world, Thomas Mueller and his team acquired the necessary know-how to handle, analyse and improve ultra-thin layers by working with graphene. This know-how has now been applied to other ultra-thin materials.



“Quite often, two-dimensional crystals have electronic properties that are completely different from those of thicker layers of the same material”, says Thomas Mueller. His team was the first to combine two different ultra-thin semiconductor layers and study their optoelectronic properties.

The solar cell's layer system: two semiconductor layers in the middle, connected to electrodes on either side.



Two Layers with Different Functions

Tungsten diselenide is a semiconductor which consists of three atomic layers. One layer of tungsten is sandwiched between two layers of selenium atoms. “We had already been able to show that tungsten diselenide can be used to turn light into electric energy and vice versa”, says Thomas Mueller. But a solar cell made only of tungsten diselenide would require countless tiny metal electrodes tightly spaced only a few micrometers apart. If the material is combined with molybdenium disulphide, which also consists of three atomic layers, this problem is elegantly circumvented. The heterostructure can now be used to build large-area solar cells.



When light shines on a photoactive material single electrons are removed from their original position. A positively charged hole remains, where the electron used to be. Both the electron and the hole can move freely in the material, but they only contribute to the electrical current when they are kept apart so that they cannot recombine.



To prevent recombination of electrons and holes, metallic electrodes can be used, through which the charge is sucked away - or a second material is added. “The holes move inside the tungsten diselenide layer, the electrons, on the other hand, migrate into the molybednium disulphide”, says Thomas Mueller. Thus, recombination is suppressed.



This is only possible if the energies of the electrons in both layers are tuned exactly the right way. In the experiment, this can be done using electrostatic fields. Florian Libisch and Professor Joachim Burgdörfer (TU Vienna) provided computer simulations to calculate how the energy of the electrons changes in both materials and which voltage leads to an optimum yield of electrical power.



Tightly Packed Layers

“One of the greatest challenges was to stack the two materials, creating an atomically flat structure”, says Thomas Mueller. “If there are any molecules between the two layers, so that there is no direct contact, the solar cell will not work.” Eventually, this feat was accomplished by heating both layers in vacuum and stacking it in ambient atmosphere. Water between the two layers was removed by heating the layer structure once again.



Part of the incoming light passes right through the material. The rest is absorbed and converted into electric energy. The material could be used for glass fronts, letting most of the light in, but still creating electricity. As it only consists of a few atomic layers, it is extremely light weight (300 square meters weigh only one gram), and very flexible. Now the team is working on stacking more than two layers – this will reduce transparency, but increase the electrical power. 



Original publication in „Nano Letters“

Free version in arxiv





Further Information:


Prof. Thomas Mueller

Photonics Institute

TU Wien

Gusshausstraße 27-29, 1040 Vienna

T: +43-1-58801-38739

thomas.mueller@tuwien.ac.at

600450 New Material Allows for Ultra-Thin Solar Cells glassonweb.com

See more news about:

Others also read

"Opportunity in the Indian Glass Market - 2014 : Market size, Market share, Market landscape, Market trend analysis, Growth drivers, Future opportunity, Future forecast" provides an insight into the Indian Glass current market scenario, structure and practices.
Dubai Investments (DI) CEO Khalid Bin Kalban has revealed that the Company seeks to examine several expansion opportunities in 2015.
This report was created for strategic planners, international executives and import/export managers who are concerned with the market for nonwired glass sheets of float glass and surface ground or polished glass.
New Business to Support Company's Growing Presence in East and Central African Markets - H.B. Fuller Company (NYSE: FUL) announced today that it has signed an agreement to purchase Continental Products Limited, a provider of industrial adhesives in East and Central Africa.
Coinciding with the fulfillment of the ARTESUN project´s first year (November), the third Project Meeting took place at Corning headquarters in Avon, France    Funded by the European Comission through its Seventh Framework Programme, ARTESUN Project aims to develop organic photovoltaic solar cells (OPV) through the implementation of three full-scale prototypes.
Dear Valued Shareholders, it’s been a breakthrough, banner year for New Energy Technologies. I’m proud to share many of our 2013 – 2014 accomplishments and development goals planned for the year ahead.

Add new comment