Glass breakthrough

Scientists in the US have developed a novel technique to make bulk quantities of glass from alumina for the first time.

Anatoly Rosenflanz and colleagues at 3M in Minnesota used a "flame-spray" technique to alloy alumina (aluminium oxide) with rare-earth metal oxides to produce strong glass with good optical properties.The method avoids many of the problems encountered in conventional glass forming and could, say the team, be extended to other oxides.

Glass is formed when a molten material is cooled so quickly that its constituent atoms do not have time to align themselves into an ordered lattice. However, it is difficult to make glasses from most materials because they need to be cooled -- or quenched -- at rates of up to 10 million degrees per second.

Silica is widely used in glass-making because the quenching rates are much lower, but researchers would like to make glass from alumina as well because of its superior mechanical and optical properties. Alumina can form glass if it is alloyed with calcium or rare-earth oxides, but the required quenching rate can be as high as 1000 degrees per second, which makes it difficult to produce bulk quantities.

Rosenflanz and colleagues started by mixing around 80 mole % of powdered alumina with various rare-earth oxide powders -- including lanthanum, gadolinium and yttrium oxides. Next, they fed the powders into a high-temperature hydrogen-oxygen flame to produce molten particles that were then quenched in water. The resulting glass beads, which were less than 140 microns across, were then heat-treated -- or sintered -- at around 1000°C. This produced bulk glass samples in which nanocrystalline alumina-rich phases were dispersed throughout a glassy matrix. The new method avoids the need to apply pressures of 1 gigapascal or more, as is required in existing techniques.

The 3M scientists characterised the glasses using optical microscopy, scanning electron microscopy, X-ray diffraction and thermal analysis, and tested the strength of the materials with hardness and fracture toughness tests. They found that their samples were much harder than conventional silica-based glasses and were almost as hard as pure polycrystalline alumina.

Moreover, over 95% of the glasses were transparent (see figure) and had attractive optical properties. For example, fully crystallized alumina-rare earth oxide ceramics showed high refractive indices if the grains were kept below a certain size.

600450 Glass breakthrough

See more news about:

Others also read

The glass sector has the increasingly widespread requirement of having an unlimited catalogue of parametric shapes and creating new ones in a simple way without being an expert in the field.
Glass Confusion is starting the New Year with Beginning Fused Glass group classes. The three-week course will be held Wednesdays from 10 a.m. to 1 p.m. and again from 5 p.m. to 9 p.m.
Shoaib Akhtar is going to be back on Indian TV screens. He is going to be featured in the new TV ad campaign for Asahi Glass.
Worldwide glass-substrate capacity is expected to continue to grow more than 40% each quarter through 2005, as a result of capacity expansion by existing glass-substrate suppliers and new companies joining the market, according to DisplaySearch.
Western Pennsylvania’s once-thriving glassmaking industry is dwindling, as did the domestic steel industry and for many of the same reasons: competition and cost.
Christmas got a little bluer for the local glass industry this week with the closure of yet another plant.

Add new comment